Plasma Heating of Titan's Exobase and Corona
Abstract
Cassini data have shown that the dominant heating process for Titan's atmospheric corona and exobase region is as yet uncertain (DeLaHaye et al. 2007). We have speculated that the incident plasma, both the slowed and deflected ambient ions and the pick-up ions, may be responsible for all or a significant fraction of the non-thermal component of Titan's corona (De La Haye et al. 2007). Our earlier models of the net incident plasma heating (Michael et al. 2004; 2005) fall short in describing the coronal structure seen by INMS on Ta, Tb and T5. Since heating of the corona and exobase affects atmospheric escape, it is critical for describing the evolution of Titan's atmosphere (Johnson 2004). Here we describe an empirical approach to this problem. INMS data and the preliminary CAPS flux data clearly indicate, not surprisingly, that the heating is spatially non-uniform and is variable, but there is as yet no correlation with the plasma flow models. Therefore, we haev analyzed INMS data for the atmospheric structure near the exobase for a large number of Cassini passes through the exobase region and we have analyzed certain CAPS data for the plasma flow near the exobase. The goal is to develop a model for the spatial variations in the plasma heating near the exobase with the goal of improving our knowledge of atmospheric escape. De La Haye, V.. et al., JGR 112, A07309, doi:10.1029/2006JA012222, 2007 Johnson, R.E. ApJ 609, L99, 2004 Michael, M., and R. E. Johnson. PSS 53, 1510, 2005. Michael, M., et al. Icarus, 175, 263, 2005.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2007
- Bibcode:
- 2007AGUFM.P23B1368K
- Keywords:
-
- 5405 Atmospheres (0343;
- 1060);
- 6060 Radiation and chemistry