A Geochemical Model for the Origin of Methane on Titan
Abstract
The existence of methane in Titan's atmosphere has been a mystery for years [1]. The short photochemical lifetime of methane in the atmosphere suggests that methane is replenished from the interior. Observations by Cassini-Huygens have offered new insights into the origin of methane on Titan. These data have confirmed that Titan's methane is endogenic [2], consistent with geophysical models [3]. Today, an issue is the origin of methane on Titan in general. Why does Titan have methane in the first place? Here, we show that methane formation would have been unavoidable on early Titan. It is likely that Titan accreted materials similar to carbonaceous chondrites and comets, except for extreme volatiles in comets, such as carbon monoxide. Thus, we assume that Titan started with Fe-Ni metals and sulfides, silicates and oxides of the rock-forming elements, organic matter, carbon dioxide, methanol, and ammonia. After accretion, radiogenic heat would have melted ice, facilitating water-rock separation and interaction. Mineral dissolution and precipitation, along with acid-base reactions, would have been facile throughout differentiation, despite the low temperature. In contrast, most redox reactions, notably organic matter decomposition, would have been slow in cold aqueous solution. Eventually, the interior would have segregated into a muddy core, covered by a high-pressure ice layer, overlain by a salty ocean, capped by an ice shell [3]. The primordial muddy core would have been composed of phyllosilicates, organic matter, carbonates, sulfides, and presumably, metals. The early salty ocean would have been rich in sodium chloride and bicarbonate, in addition to methanol and ammonium salts. Methane would not have formed in hydrothermal systems at the ocean floor because the high-pressure ice layer would have inhibited hydrothermal circulation. Instead, we propose that methane is a byproduct of the thermal evolution of the core. Specifically, our core devolatilization hypothesis states that high temperatures driven by radioactive decay [4] changed the chemistry of the core via metamorphism. Preliminary calculations indicate that hydrous minerals recrystallize into anhydrous minerals by releasing water, which oxidizes Fe metal, producing dihydrogen (i.e., reducing conditions). In response, organic matter in the core is broken down into carbon-bearing solids, liquids, and gases, including methane. In time, methane can migrate into the ocean, where it can be trapped in clathrate hydrates and subsequently released into the atmosphere [3]. References: [1] Owen T.C. (2000) P&SS 48, 747-752. [2] Niemann H.B. et al. (2005) Nature 438, 779-784. [3] Tobie G. et al. (2006) Nature 440, 61-64. [4] Grasset O. et al. (2000) P&SS 48, 617-636.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2007
- Bibcode:
- 2007AGUFM.P23B1361G
- Keywords:
-
- 1060 Planetary geochemistry (5405;
- 5410;
- 5704;
- 5709;
- 6005;
- 6008);
- 6040 Origin and evolution;
- 6281 Titan