The Jupiter System Observer Mission Concept: Scientific Investigation of the Jovian System
Abstract
NASA's Science Mission Directorate (SMD), in efforts to start an outer solar system flagship mission in the near future, commissioned studies of mission concepts for four high-priority outer solar system destinations: Europa, the Jovian system, Titan, and Enceladus. Our team has identified and evaluated science and mission architectures to investigate major elements of the Jovian system: Jupiter, the Galilean moons, rings, and magnetosphere, and their interactions. SMD dubbed the mission concept the "Jupiter System Observer (JSO)." This JPL-led study's final report is now complete and was submitted in August 2007. SMD intends to select a subset of these four concepts for additional detailed study, leading to a potential flagship mission new start. The study's NASA-appointed, multi-institutional Science Definition Team (SDT) identified a rich set of science objectives that JSO can address quite well. The highly capable science payload (including ~50-cm optics), an extensive tour with multiple close flybys of Io, Europa, Ganymede and Callisto, and a significant time in orbit at Ganymede, addresses a large set of Solar System Exploration Decadal Survey (2003) and NASA Solar System Exploration Roadmap (2006) high-priority objectives. With the engineering team, the SDT evaluated a suite of mission architectures and the science they enable to arrive at two architectures that provide the best science for their estimated mission costs. This paper discusses the science objectives and operational capabilities and considerations for these mission concepts, and some options available for emphasizing specific science objectives. This work was performed at JPL, APL, and other institutions under contract to NASA.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2007
- Bibcode:
- 2007AGUFM.P21B0532S
- Keywords:
-
- 5400 PLANETARY SCIENCES: SOLID SURFACE PLANETS;
- 5700 PLANETARY SCIENCES: FLUID PLANETS;
- 6207 Comparative planetology;
- 6218 Jovian satellites;
- 6265 Planetary rings