Changes of Soil Aggregate C Isotopes in No-Till Corn Following Bromegrass.
Abstract
This field study is near Ithaca, Nebraska, USA (lat. 41.151, long. 96.401) on a Filbert silt loam (fine, smectitic, mesic Vertic Argialboll). The site was in bromegrass since 1986. Corn was no-till seeded into the bromegrass sod in spring 1999. A randomized complete block design with three replicates was used. No-till corn was the main treatment with nitrogen (N) as subplots. N was broadcast at the start of each growing season at 60 or 120 kg N/ha as NH4NO3. Total biomass was measured by weighing 4.4 m of row in each plot. Soil samples were obtained in May 1999 (baseline sampling), Sept 1999, June 2000, Oct 2000, Sept 2001, Nov 2002, Sept 2003, and Oct 2005 from pre-selected areas by removal of plant material from the soil surface and removing the 0-5, 5- 10, and at 4 of the 8 harvests also sampling the 10-30 cm depths with a flat-bladed shovel. Soil bulk densities were determined on clods from each layer. The moist soil was passed through an 8 mm sieve before air drying and storing. Aggregate size fractions were obtained with a Yoder wet-aggregate method. Soil size fractions obtained were > 2, 1, 0.5, 0.25, 0.125, 0.045 and < 0.045 mm. Detritus was floated to the surface and skimmed off for transfer to a separate container. Aggregates were dried at 55°C, weighed, ground, and analyzed for total C and N and 13C:12C isotope ratio. Because soil organic carbon (SOC) was labeled with the bromegrass (C3 plant) isotope signature, then during the 77 months of this experiment the re-labeling of each fraction and the total SOC with the corn (C4 plant) isotope signature and the amounts of SOC lost from aggregate size fractions with conversion of the bromegrass sod to no-till corn was measured. During 6.5 years, total SOC decreased from 21.1, 17.0, and 55.8 t/ha in the 0-5, 5-10, and 10-30 cm depths to 20.1, 16.7, and 55.5 t/ha, respectively. However the SOC in the < 2, 0.5-2, and < 0.5 mm fractions of the 0 - 5 cm depth changed from 62, 21, and 16 % of the total SOC at the studies beginning to 31, 40, and 29 %, respectively, by the end of 77 months. Weight of SOC from C4 plants was 34.8, 49.8, and 73.2 % of total SOC in the 0-5, 5-10, and 0-30 cm depths, respectively at the beginning of the study, but after 77 months of no-till corn was 47.3, 59.0, and 71.8 % of total SOC for these same depths. In summary, it is important to evaluate losses or gains of SOC under cultivation. Use of the 13C:12C ratios, as influenced by reversing the growing sequence of C3 vs. C4 plants, allows losses of older SOC from C3 plants (bromegrass) vs. that added by growing C4 plants (corn) to be determined over time and allows rates of change of the SOC associated with various soil fractions to be evaluated.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2007
- Bibcode:
- 2007AGUFM.B23D1612F
- Keywords:
-
- 0402 Agricultural systems;
- 0428 Carbon cycling (4806);
- 0454 Isotopic composition and chemistry (1041;
- 4870);
- 0486 Soils/pedology (1865)