Microbial Populations Associated with Phosphate-Mediated Vadose Zone Sequestration of Strontium and Uranium
Abstract
Significant quantities of metals and radionuclides are contained in thick unsaturated zones at several contaminated sites in the western US. In many cases, this contamination has migrated to underlying groundwater, sometimes decades after being released into the subsurface. Because of the prohibitive costs associated with physically removing the contamination, an attractive remedy to this problem is to develop methods for long-term in situ stabilization of the contamination in the vadose zone. Our research focuses on developing a method of introducing gaseous compounds to stimulate precipitation of stable phosphate mineral phases in the vadose zone to immobilize soluble contaminants thus minimizing further transport to groundwater. Preliminary studies have demonstrated that biological precipitation of phosphate minerals can be stimulated under unsaturated conditions by injection of triethyl phosphate (TEP) gas. Microorganisms hydrolyze TEP, releasing inorganic phosphate, catalyzing the precipitation of metals and radionuclide-containing phosphate minerals. Our initial results demonstrate that a mixed culture of aerobic microorganisms from vadose zone sediments, enriched with TEP, produce significantly higher concentrations of inorganic phosphate than the no TEP control. A high-density microarray (PhyloChip) capable of detecting up to 9,000 prokaryotic taxa will be used to identify the microbial community composition of the enriched culture. In addition, the metabolically active organisms will be investigated through extraction and hybridization of ribosomal RNA. Organisms capable of hydrolyzing TEP to inorganic phosphate will be further characterized to determine the requirements for aerobic microbially-mediated radionuclide immobilization. The chemical and isotopic compositions of the reactants and products will be measured to enable in situ monitoring of microbial TEP utilization. The result of these studies will be the basis for unsaturated column experiments designed to test different delivery methods for TEP and other nutrients, and to estimate potential rates of phosphate-mediated radionuclide immobilization in the vadose zone.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2007
- Bibcode:
- 2007AGUFM.B11C0617W
- Keywords:
-
- 0418 Bioremediation;
- 0419 Biomineralization