Hydrologic Controls on Dissolved Organic Matter Mobilization and Transport within Undisturbed Soils
Abstract
Dissolved organic matter (DOM) in soils plays an important role in the transport of nutrients and contaminants through the terrestrial environment. Subsurface pathways deliver a significant portion of carbon to streams that drain forested and agricultural watersheds. Although the importance of rainfall events to the DOM soil-water flux is well known, the hydrologic factors that govern this flux have not been fully examined. The primary purpose of this study is to investigate the soil and rainfall characteristics controlling the mobilization and transport of DOM in undisturbed soils. Intact soil columns including topsoil and subsoil layers were taken from the Harvard forest in Petersham, MA. Unsaturated flow conditions were maintained by applying suction to the bottom of the soil columns. The columns were irrigated by series of interrupted rainfall events using the same total volume of artificial rain water. Preliminary experiments showed continuous leaching of DOM (measured by dissolved organic carbon) with an initial peak in concentration that coincided with the passage of the wetting front. The leached DOM was also characterized by UV absorbance, fluorescence spectroscopy in the emission mode, and additional spectroscopic derived indexes such as the humification index. Ongoing column experiments are focusing on the effects of rainfall intensity, frequency, and rainfall history on DOM mobilization and transport through natural, structured soils. These investigations can elucidate the influence of factors that are associated with climate change on DOC dynamics. Results of our analyses should also provide insight into the mechanisms that govern DOM mobilization in soils.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2007
- Bibcode:
- 2007AGUFM.B11A0069X
- Keywords:
-
- 1831 Groundwater quality;
- 1865 Soils (0486);
- 1875 Vadose zone;
- 1879 Watershed;
- 4806 Carbon cycling (0428)