Ice-sheet contributions to future sea-level change
Abstract
Accurate simulation of ice-sheet surface mass balance requires higher spatial resolution than is afforded by typical atmosphere-ocean general circulation models (AOGCMs), owing, in particular, to the need to resolve the narrow and steep margins where the majority of precipitation and ablation occurs. We have developed a method for calculating mass-balance changes by combining ice-sheet average time-series from AOGCM projections for future centuries, both with information from high-resolution climate models run for short periods and with a 20km ice-sheet mass-balance model. Antarctica contributes negatively to sea level on account of increased accumulation, while Greenland contributes positively because ablation increases more rapidly. The uncertainty in the results is about 20% for Antarctica and 35% for Greenland. Changes in ice-sheet topography and dynamics are not included, but we discuss their possible effects. For an annual- and area-average warming exceeding 4.5±0.9K in Greenland and 3.1±0.8K in the global average, the net surface mass balance of the Greenland ice sheet becomes negative, in which case it is likely that the ice sheet would eventually be eliminated, raising global-average sea level by 7m.
- Publication:
-
Philosophical Transactions of the Royal Society of London Series A
- Pub Date:
- July 2006
- DOI:
- 10.1098/rsta.2006.1796
- Bibcode:
- 2006RSPTA.364.1709G
- Keywords:
-
- sea level;
- ice sheet;
- Greenland;
- Antarctica;
- climate change