Interface mobility and the liquid-glass transition in a one-component system described by an embedded atom method potential
Abstract
We present molecular dynamics (MD) studies of the liquid structure, thermodynamics, and dynamics in a one-component system described by the Ercolessi-Adams embedded atom method potential for Al. We find two distinct noncrystalline phases in this system. One of them is a liquid phase and the second phase has similar structure but different equation of state. Moreover, this phase has qualitatively different dynamics than that in the liquid phase. The transitions between these two noncrystalline phases can be seen during MD simulation. The hysteresis in this transition suggests that this is a first-order transition. This conclusion is strongly supported by simulations of the two phases that demonstrate that these phases may coexist with a well-defined interface. We find the coexistent temperature and the interface mobility. Finally, we discuss how these results can be explained using modern models of vitrification.
- Publication:
-
Physical Review B
- Pub Date:
- September 2006
- DOI:
- Bibcode:
- 2006PhRvB..74j4206M
- Keywords:
-
- 61.20.Ja;
- 61.43.Dq;
- 64.70.Pf;
- 66.30.Fq;
- Computer simulation of liquid structure;
- Amorphous semiconductors metals and alloys;
- Glass transitions;
- Self-diffusion in metals semimetals and alloys