Atomic structures of peptide self-assembly mimics
Abstract
Although the β-rich self-assemblies are a major structural class for polypeptides and the focus of intense research, little is known about their atomic structures and dynamics due to their insoluble and noncrystalline nature. We developed a protein engineering strategy that captures a self-assembly segment in a water-soluble molecule. A predefined number of self-assembling peptide units are linked, and the β-sheet ends are capped to prevent aggregation, which yields a mono-dispersed soluble protein. We tested this strategy by using Borrelia outer surface protein (OspA) whose single-layer β-sheet located between two globular domains consists of two β-hairpin units and thus can be considered as a prototype of self-assembly. We constructed self-assembly mimics of different sizes and determined their atomic structures using x-ray crystallography and NMR spectroscopy. Highly regular β-sheet geometries were maintained in these structures, and peptide units had a nearly identical conformation, supporting the concept that a peptide in the regular β-geometry is primed for self-assembly. However, we found small but significant differences in the relative orientation between adjacent peptide units in terms of β-sheet twist and bend, suggesting their inherent flexibility. Modeling shows how this conformational diversity, when propagated over a large number of peptide units, can lead to a substantial degree of nanoscale polymorphism of self-assemblies.
- Publication:
-
Proceedings of the National Academy of Science
- Pub Date:
- November 2006
- DOI:
- 10.1073/pnas.0606690103
- Bibcode:
- 2006PNAS..10317753M