Effects of addition of TiO 2 nanoparticles on mechanical properties and ionic conductivity of solvent-free polymer electrolytes based on porous P(VdF-HFP)/P(EO-EC) membranes
Abstract
To enhance the performance (i.e., mechanical properties and ionic conductivity) of pore-filling polymer electrolytes, titanium dioxide (TiO 2) nanoparticles are added to both a porous membrane and its included viscous electrolyte, poly(ethylene oxide- co-ethylene carbonate) copolymer (P(EO-EC)). A porous membrane with 10 wt.% TiO 2 shows better performance (e.g., homogeneous distribution, high uptake, and good mechanical properties) than the others studied and is therefore chosen as the matrix to prepare polymer electrolytes. A maximum conductivity of 5.1 × 10 -5 S cm -1 at 25 °C is obtained for a polymer electrolyte containing 1.5 wt.% TiO 2 in a viscous electrolyte, compared with 3.2 × 10 -5 S cm -1 for a polymer electrolyte without TiO 2. The glass transition temperature, T g is lowered by the addition of TiO 2 (up to 1.5 wt.% in a viscous electrolyte) due to interaction between P(EO-EC) and TiO 2, which weakens the interaction between oxide groups of the P(EO-EC) and lithium cations. The overall results indicate that the sample prepared with 10 wt.% TiO 2 for a porous membrane and 1.5 wt.% TiO 2 for a viscous electrolyte is a promising polymer electrolyte for rechargeable lithium batteries.
- Publication:
-
Journal of Power Sources
- Pub Date:
- 2006
- DOI:
- 10.1016/j.jpowsour.2006.08.022
- Bibcode:
- 2006JPS...162.1304J
- Keywords:
-
- Pore-filling polymer electrolyte;
- Porous membrane;
- TiO <SUB>2</SUB> nanoparticles;
- Ionic conductivity;
- Rechargeable lithium batteries;
- Conductivity