Was Einstein right?
Abstract
We review the experimental evidence for Einstein's special and general relativity. A variety of high precision null experiments verify the weak equivalence principle and local Lorentz invariance, while gravitational redshift and other clock experiments support local position invariance. Together these results confirm the Einstein Equivalence Principle which underlies the concept that gravitation is synonymous with spacetime geometry, and must be described by a metric theory. Solar system experiments that test the weakfield, postNewtonian limit of metric theories strongly favor general relativity. The Binary Pulsar provides tests of gravitationalwave damping and of strongfield general relativity. Recently discovered binary pulsar systems may provide additional tests. Future and ongoing experiments, such as the Gravity Probe B Gyroscope Experiment, satellite tests of the Equivalence Principle, and tests of gravity at short distance to look for extra spatial dimensions could constrain extensions of general relativity. Laser interferometric gravitationalwave observatories on Earth and in space may provide new tests of gravitational theory via detailed measurements of the properties of gravitational waves.
 Publication:

Annalen der Physik
 Pub Date:
 January 2006
 DOI:
 10.1002/andp.200510170
 arXiv:
 arXiv:grqc/0504086
 Bibcode:
 2006AnP...518...19W
 Keywords:

 General relativity;
 tests of general relativity;
 General Relativity and Quantum Cosmology
 EPrint:
 21 pages, 3 figures, to be published in "100 Years of Relativity: Spacetime Structure  Einstein and Beyond", ed. Abhay Ashtekar (World Scientific, Singapore)