Characterizing three candidate magnetic cataclysmic variables from SDSS: XMM-Newton and optical follow-up observations.
Abstract
In the latest in our series of papers on XMM-Newton and ground-based optical follow-up of new candidate magnetic cataclysmic variables (mCVs) found in the Sloan Digital Sky Survey, we report classifications of three systems: SDSS J144659.95+025330.3, SDSS J205017.84-053626.8, and SDSS J210131.26+105251.5. Both the X-ray and optical fluxes of SDSS J1446+02 are modulated on a period of 48.7+/-0.5 min, with the X-ray modulation showing the characteristic energy dependence of photo-electric absorption seen in many intermediate polars (IP). A longer period modulation and radial velocity variation is also seen at a period around 4 hrs, though neither dataset set is long enough to constrain this longer, likely orbital, period well. SDSS J2050-05 appears to be an example of the most highly magnetized class of mCV, a disk-less, stream-fed polar. Its 1.57 hr orbital period is well-constrained via optical eclipse timings; in the X-ray it shows both eclipses and an underlying strong, smooth modulation. In this case, broadly phase-resolved spectral fits indicate that this change in flux is the result of a varying normalization of the dominant component (a 41 keV MEKAL), plus the addition of a partial covering absorber during the lower flux interval. SDSS J2101+10 is a more perplexing system to categorize: its X-ray and optical fluxes exhibit no large periodic modulations; there are only barely detectable changes in the velocity structure of its optical emission lines; the X-ray spectra require only absorption by the interstellar medium; and the temperatures of the MEKAL fits are low, with maximum temperature components of either 10 or 25 keV. We conclude that SDSS J2101+10 can not be an IP, nor likely a polar, but is rather most likely a disc accretor-- a low inclination SW Sex star.
- Publication:
-
The Astronomical Journal
- Pub Date:
- December 2006
- DOI:
- 10.1086/508928
- arXiv:
- arXiv:astro-ph/0609462
- Bibcode:
- 2006AJ....132.2743H
- Keywords:
-
- Astrophysics
- E-Print:
- 12 pages, 9 figures, accepted for publication in the Astronomical Journal