Relationship Between Subduction Erosion, Seamount Subduction, Fluid Venting and Mound Formation on the Slope of the Costa Rican Continental Margin
Abstract
The oceanic crust off central Costa Rica northwest of the Cocos Ridge is dominated by chains of seamounts rising 1-2 km above the seafloor with diameters of up to 20 km. The subduction of these seamounts leads to strong indentations, scars and slides on the continental margin. A smoother segment of about 80 km width is located offshore Nicoya peninsula. The segment ends at a fracture zone which marks the transition of oceanic crust created at the Cocos-Nazca spreading center (CNS) and at the East Pacific Rise (EPR). Offshore Nicaragua the incoming EPR crust is dominated by bending related faults. To investigate the relationship between subduction erosion, fluid venting and mound formation, multibeam bathymetry and high-resolution deep-tow sidescan sonar and sediment echosounder data were acquired during R/V Sonne cruises SO163 and SO173 (2002/2003). The deep-tow system consisted of a dual-frequency 75/410 kHz sidescan sonar and a 2-12 kHz chirp sub-bottom profiler. The connection of the observed seafloor features to deeper subduction related processes is obtained by analysis of multi-channel streamer (MCS) data acquired during cruises SO81 (1992) and BGR99 (1999). Data examples and interpretations for different settings along the margin are presented. Near the Fisher seamount the large Nicoya slump failed over the flank of a huge subducted seamount. The sidescan and echosounder data permit a detailed characterization of fault patterns and fluid escape structures around the headwall of the slump. Where the fracture zone separating CNS and EPR crust subducts, the Hongo mound field was mapped in detail. Several mounds of up to 100 m height are located in line with a scar possibly created by a subducting ridge of the fracture zone. MCS data image a topographic high on the subducting oceanic crust beneath the mound field which lead to uplift and possibly enabled ascent of fluids from the subducting plate. The combined analysis of geoacoustic and seismic MCS data confirms that fracturing of the continental slope by subducting oceanic relief is a major mechanism which causes the opening of pathways for fluids to migrate upwards.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFM.V41B1706P
- Keywords:
-
- 3002 Continental shelf and slope processes (4219);
- 3025 Marine seismics (0935;
- 7294);
- 3045 Seafloor morphology;
- geology;
- and geophysics;
- 3060 Subduction zone processes (1031;
- 3613;
- 8170;
- 8413);
- 3070 Submarine landslides