A 47 ka 40Ar/39Ar age for the Rotoiti Eruption, New Zealand, Measured by Multi-collection Noble gas Mass Spectrometry
Abstract
The recent availability of commercial multi-collector noble gas mass spectrometers provides new opportunities for improved precision in 40Ar/39Ar dating, particularly for young Quaternary aged samples, where precise measurement of the 40Ar/36Ar ratio is critical. A Nu Instruments Noblesse multi-collector noble gas mass spectrometer was used to investigate the age of the Rotoiti eruption, the last major caldera-forming event at the Haroharo caldera, Okataina volcanic centre, New Zealand. Ash derived from the Rotoiti eruption is an important regional stratigraphic marker, but has proved difficult to date by a variety of methods, with estimates ranging from 45-65ka, at or beyond the useful range of 14C. The Rotoiti eruption is notable for the occurrence of cognate K-feldspar-biotite-glass-bearing granitoid lithics. K- feldspars were separated from a previously studied sample of a Rotoiti granitoid (103/2-1 and along with neutron fluence monitor Alder Creek sanidine (ACs = 1.194 +/- 0.007 Ma) were irradiated for 10 minutes in the Cd-lined facility at the OSU TRIGA reactor. Unknowns and monitor minerals were measured in multi-collection mode using the same detector configuration. Mass fractionation and detector discrimination for 40Ar/36Ar was monitored by repeated measurement of 1.2 x 10-13 mole air aliquots. Single crystal laser fusion ages, for K- feldspar that contain more than 10 percent *40Ar, range from 45-100 ka. On an isotope correlation diagram, the data for the younger population defines an isochron of 47 +/- 2 ka (eruption age), with an initial 40Ar/36Ar = 299.32 +/- 0.91 (MSWD of 1.1). K-feldspars with higher apparent ages, which are excluded from the isochron calculation, are interpreted to be partly reset crystals from earlier crystallization event/s within the Haroharo Caldera.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFM.V33C0691S
- Keywords:
-
- 1100 GEOCHRONOLOGY;
- 1105 Quaternary geochronology;
- 8400 VOLCANOLOGY;
- 8404 Volcanoclastic deposits;
- 8440 Calderas