The Impact of Tropical Cyclones on Coral Bleaching and Coral Diseases
Abstract
Tropical cyclones (TCs) impact coral reef ecology in various ways, they cool down ambient sea surface temperature (SST), damage coral reefs by wave action, decrease salinity, increase nutrients, and increase sedimentation rates on a reef. Here we present an investigation into the effect of TCs on coral bleaching and the effect TCs have on the occurrence of coral diseases. Coral bleaching, the condition where the symbiotic zooxanthellae leave the coral host, is one of the major threats to coral reefs. Bleaching occurs in anomalously warm waters, analysis of historical TC tracks show that TCs frequently occur near coral bleaching episodes. Intriguingly, TCs cool down sea surface temperature by vertical mixing and as SST is the most important factor in coral bleaching this phenomenon might have an impact on the duration, occurrence and the resulting coral mortality, of bleaching events. In recent literature a correlation has been seen in the power of tropical cyclones and average sea surface temperature, making the study of the effect of TCs on the ecology of reefs an urgent one. We will present case studies where a TCs occurred near bleaching episodes and a statistical analysis to quantify this effect. To do this we use historical cyclone track data, satellite SST data, and a dataset of reefs. But there are other TC effects on reefs that bear investigation. Because TCs occur near corals that experience thermal stress, the changes in the corals environment caused by TCs might be anomalously detrimental. For example, data suggests that corals, because they are stressed by increased sedimentation, are more vulnerable to disease and algal overgrowth after TC damage. Nutrients have been shown to increase the severity of coral diseases. With satellite data it can be shown that short-term events such as increased run-off due to tropical cyclones can be an important part of the distribution of pollutants and pathogens affecting reefs. Infectious diseases severely affect scleractinian corals. We compare a database of coral disease outbreaks and a database of historical hurricane tracks and quantify run-off using satellite data to investigate the hypothesis that TCs can contribute to the spread of coral diseases by run-off induced transport of sediment, nutrients, pollutants and pathogens to a reef.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFM.U53B0048V
- Keywords:
-
- 0315 Biosphere/atmosphere interactions (0426;
- 1610);
- 0480 Remote sensing;
- 1630 Impacts of global change (1225);
- 4220 Coral reef systems (4916);
- 4572 Upper ocean and mixed layer processes