Geophysical Signature of the Lake Bosumtwi Impact Crater from Pre-drilling Site Surveys
Abstract
The Bosumtwi impact crater located near Kumasi, Ghana was formed by a meteorite impact about one million years ago and has a diameter of about 10.5 km. Geophysical investigations involving gravity and magnetic measurements were carried out at the Bosumtwi crater to determine the geophysical signature of the crater with the aim of understanding the impact process. Gravity data was acquired on land at 163 locations around the crater area, as well as on the shore of the lake. The separation between the gravity stations was 500 m for profiles which ran radially toward the lake, and 700 1000 m along roads and footpaths which ran parallel to the shore. In addition, marine gravity and magnetic surveys were carried out along 14 north-south and 15 east- west profiles on the lake with a line spacing of 800 m using a Garmin 235 Echo Sounder/GPS as a navigational tool. Results from gravity modelling showed that the gravity signature of the crater is characterized by a negative Bouguer anomaly with an amplitude roughly equal to 18 mgal. The results also indicated a central uplift at 250 m depth below the lake, thus confirming it as a complex impact crater. Magnetic modelling yielded a model for the causative body, which is located north of the central uplift. The model has a magnetic susceptibility of 0.03 SI and extends from 200 to 610 m depth below the lake surface. The causative body has been interpreted as magnetized bodies consisting of thin sheets of suevitic impact formations. These results serve as a contribution to the understanding of the impact process of this young crater.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFM.T23D0540B
- Keywords:
-
- 8136 Impact phenomena (5420;
- 6022);
- 8175 Tectonics and landscape evolution