Fragmented Landscapes in the San Gorgonio Pass Region: Insights into Quaternary Strain History of the Southern San Andreas Fault System
Abstract
The San Gorgonio Pass (SGP) region is a zone of structural complexity within the southern San Andreas Fault system that is characterized by (1) multiple strands of the San Andreas Fault (SAF), (2) intense and diverse microseismicity, (3) contraction within the SGP fault zone (SGPfz), and (4) complex and diverse landforms - all a consequence of structural complications in the vicinity of the southeastern San Bernardino Mountains (SBM). Multiple strands of the SAF zone in the SGP region partition the landscape into discrete geomorphic/geologic domains, including: San Gorgonio Mountain (SGM), Yucaipa Ridge (YR), Kitching Peak (KP), Pisgah Peak (PP), and Coachella Valley (CV) domains. The morphology of each domain reflects the tectonic history unique to that region. Development of the SGP knot in the Mission Creek strand of the SAF (SAFmi) led to westward deflection of the SAFmi, juxtaposition of the KP, PP, and SGM domains, initiation of uplift of YR domain along thrust faults in headwaters of San Gorgonio River, and development of the San Jacinto Fault. Slip on the SAF diminished as a result, thereby allowing integrated drainage systems to develop in the greater SGP region. San Gorgonio River, Whitewater River, and Mission Creek are discrete drainages that transport sediment across the SGM, YR, PP, KP, and CV domains into alluvial systems peripheral to the SGP region. There, depositional units (San Timoteo Formation, upper member, deformed gravels of Whitewater River) all contain clasts of SBM-type and San Gabriel Mountain-type basement, thus constraining slip on the SAF in the SGP region. Middle and late Pleistocene slip on the Mill Creek strand of the SAF (SAFm) in the SGP region has attempted to bypass the SGP knot, and has disrupted landscapes established during SAFmi quiescence. Restoration of right-slip on the SAFm is key to deciphering landscape history. Matti and others (1985, 1992) proposed that a bi-lobed alluvial deposit in the Raywood Flats area has been displaced by 8-10 km from entrenched bedrock drainages north of the SAFm (North Fork Whitewater River and Hell-For-Sure Canyon). This restoration, along with restoration of 3-4 km of dextral-slip along SAFmi, leads to an integrated drainage network that extended from San Gorgonio Peak southward across the SAFm and SAFmi, through the San Timoteo drainage basin and ultimately to the Santa Ana River drainage. Following final slip on the SAFmi, which occurred between approximately 1.2 and 0.5 Ma, the 8-10 km dextral-slip reconstruction on the SAFm can be used to restore the ancestral Mission Creek drainage system, which has always flowed southeast. A large alluvial-fan complex that overlies the SAFmi strand developed where the ancestral Mission Creek River debouched into the Coachella Valley. Analysis of cosmogenic radionuclides (21Ne from quartz) from surface boulders indicates that oldest deposits in the fan complex are about 400ka old, compatible with pedogenic development on the oldest surface. Approximately 2-4 km dextral slip on the youngest strands of the SAF (Banning and Garnet Hill) represents the latest bypass of the SGP structural knot. Cumulative displacement on all strands of the SAF in the greater SGP region appears to have been no more than ~18 km since inception of the left step in the SAFmi. Regional evidence suggests that this event initiated at ~1.2Ma, leading to a Quaternary slip rate on the SAF at SGP of no more than 10-15 mm/yr.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFM.T21B0406K
- Keywords:
-
- 0486 Soils/pedology (1865);
- 8107 Continental neotectonics (8002);
- 8175 Tectonics and landscape evolution