Initial Mars Upper Atmospheric Structure Results from the Accelerometer Science Experiment aboard Mars Reconnaissance Orbiter
Abstract
Designed for aerobraking, Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005, achieved Mars Orbital Insertion (MOI), March 10, 2006, and successfully completed aerobraking on August 30, 2006. Atmospheric density decreases exponentially with increasing height. By small propulsive adjustments of the apoapsis orbital velocity, periapsis altitude was fine tuned to the density surface that safely used the atmosphere of Mars to aerobrake over 445 orbits, providing 890 vertical structures. MRO periapsis precesses from near the South Pole at 6pm LST to near the equator at 3am LST. Meanwhile, apoapsis is brought dramatically from 40,000km at MOI to 480 km at aerobraking completion (ABX). Without aerobraking this would have required an additional 400kg of fuel. After ABX, two small propulsive orbital adjustment maneuvers September 5, 2006 and September 11, 2006 established the final Primary Science Orbit (PSO). Each of the 445 aerobraking orbits provides, a pair of vertical structures inbound toward periapsis and outbound from periapsis, with a distribution of density, scale heights, temperatures, and pressures along the orbital path, providing key in situ insight into various upper atmosphere (> 100 km) processes. One of the major questions for scientists studying Mars is: Where did the water go? Honeywell's substantially improved electronics package for its IMU (QA-2000 accelerometer, gyro, electronics) maximized accelerometer sensitivities at the requests of The George Washington University, JPL, and Lockheed Martin. The improved accelerometer sensitivities allowed density measurements to exceed 200km, at least 40 km higher than with Mars Odyssey (MO). This extends vertical structures from MRO into the neutral lower exosphere, a region where various processes may allow atmospheric gasses to escape. Over the eons, water may have been lost in both the lower atmosphere and the upper atmosphere, thus the water balance throughout the entire atmosphere from subsurface to exosphere may be equally critical. Comparisons of accelerometer data from Mars Global Surveyor (MGS), MO and MRO will help characterize key temporal and spatial cycles. During the Odyssey Aerobraking we discovered a very strong winter polar warming near 100km, where temperatures were found to be up to 100K higher than expected near the North Pole. However, with MRO we detected only a very weak winter polar warming at the South Pole. It is expected that the polar warming results from cross equatorial meridional flow from the summer hemisphere into the winter hemisphere with adiabatic heating near the winter pole. The discovery from MRO of a very weak winter warming near aphelion in the southern winter polar region compared to the very strong winter warming near perihelion in the northern winter polar region is apparently due to a weaker input of solar energy into the meridional circulation resulting in less adiabatic heating near aphelion in the winter polar region. Results are also shown of global scale measurements of non- migrating tides and of global density and temperature distributions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFM.P33A..06K
- Keywords:
-
- 5405 Atmospheres (0343;
- 1060);
- 6225 Mars