Holocene Fire History of an Eastern Oregon Forest Based on Soil Charcoal Radiocarbon Dates
Abstract
Limited research has been done on long-term forest fire histories in northeastern Oregon. As part of an investigation to determine the minimum age of a 300 ha landslide in the Blue Mountains, a pit was excavated near the toe of the slide. The pit, located in a depression between the landslide and a ridge, contains massive clays and silts, and an 8000-year sequence of forest fires recorded in 7 buried charcoal layers. Eight- thousand-year-old Mazama Ash (Crater Lake, Oregon) is common in the area, but no tephra was found in the excavation. The upper 17 cm is organic rich soil. Seven horizons of charcoal are present; the upper six are subhorizontal and occur at depths of 17, 36, 41, 46, 52, and 57 cm. The lowest charcoal horizon follows a disconformity that cuts diagonally across the pit from 85 to 125 cm below the surface; oxidation in the form of orange mottling occurs above this disconformity (interpreted to be a paleoslope) and is prominent below it. The charcoal horizons provide evidence of large-scale forest fires in the vicinity, with differing intensities represented by the amount of charcoal in each horizon. The layers vary in thickness from 2 to 6 cm. Five charcoal horizons were radiocarbon dated (AMS) and calendar calibrated. The charcoal at the base of the soil (at 17 cm) provided an age of AD 1670 to 1960; this horizon correlates with widespread fires in the Blue Mountains in AD 1855. The horizon second closest to the surface (at 36 cm) provided an age of 1310 ± 40 B.P. The thickest horizon (at 46 cm) yielded an age of 2420 ± 40 B.P. The lowest horizontal horizon (at 57 cm) provided an age of 3460 ± 40 B.P. The lowest charcoal (at the disconformity) yielded an age of 7990 ± 40 B.P. Based on radiocarbon dates, the mean rate of sedimentation in the closed depression is approximately 1.2 cm/century. Fire episodes (which correspond remarkably well with a lake core site approximately 150 km south), indicate relatively long periods (from 400 to over 4000 years) between large, stand-replacing fires, and are suggestive of changing climate and ecological conditions in this forest setting. Past fire sequences provide important clues to predicting future climate-wildfire scenarios.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFM.H11B1251C
- Keywords:
-
- 0428 Carbon cycling (4806);
- 0439 Ecosystems;
- structure and dynamics (4815);
- 1105 Quaternary geochronology;
- 1632 Land cover change;
- 9605 Neogene