Holocene Fire, Climate, and Geomorphic Response: Perspectives From the Past and Indications for the Future
Abstract
Increased wildfire activity has accompanied late 20th-century to present warming across the diverse conifer forests of western North America. In ponderosa pine forests in particular, large, severe wildfires and ensuing erosion and debris flows appear unprecedented in light of tree-ring fire-scar records, and are often attributed to increased stand density following Euro-American settlement and fire suppression starting in the late 1800s. Yet, presettlement periods in fire-scar records correspond to mostly cooler Little Ice Age climates, when we expect that severe fires may be less probable. AMS 14C dating of fire-related alluvial-fan deposits provides a longer-term context for assessing links between fire, climate, erosion, and anthropogenic change. Infrequent high-severity fire is typical of cool, high-elevation Yellowstone National Park (YNP). Fire-related debris flows were common in YNP 2350-2000 cal yr BP and in Medieval time 1050-650 BP, both relatively warm periods at many sites across the Northern Hemisphere. Drier, low-elevation ponderosa forests in central Idaho also experienced severe fires and debris flows at these times, and ~25% of fan aggradation in the last 4000 yr occurred via postfire debris flows within the 400-yr Medieval period containing widespread, multidecadal droughts (Cook et al. 2004). Few fire-related deposits in YNP date to the Little Ice Age and prior cold episodes ca. 1400 and 2800 BP. At these same times, thin charcoal-bearing deposits indicate frequent low-severity fires in Idaho, where cooler, effectively wetter climates promoted growth of grass and fine fuels that promoted surface fires in the typically dry summers of this region. Initial data from varied forest types in the monsoonal (dry spring, wet summer) climate of the Sacramento Mountains, New Mexico, indicate voluminous fire-related sedimentation 6000-4500 BP, consistent with a warm middle Holocene. Fire-induced debris flows were less frequent in the late Holocene, but indicate that some severe fires affected ponderosa pine-dominated forests. Therefore, modern postfire debris flows are not without precedent in any of these areas, where fire has been an important catalyst for episodic erosion. Each record indicates an increased probability of severe fire with warmer climates. As greenhouse gas increases are virtually assured over the next century, impacts on fire and erosion have likely just begun. Earlier snowmelt accompanying warming lengthens the fire season in much of the Rocky Mountains, including YNP and central Idaho (Westerling et al. 2006). In ponderosa and similar forests where surface fires were suppressed by humans, increased stand density compounds the effect of warming. Increasing temperatures may also heighten precipitation intensity, producing greater postfire erosion. Although Holocene history provides imperfect analogs for a uniquely anthropogenic future, the sensitivity of fire regimes to past warming portends future increases in severe fires and geomorphic change.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFM.H11B1243M
- Keywords:
-
- 1807 Climate impacts;
- 1810 Debris flow and landslides;
- 1812 Drought;
- 1815 Erosion;
- 1824 Geomorphology: general (1625)