Glacier Erosion and Response to Climate in Chilean Patagonia
Abstract
A vibrant dimension in current research on landscape evolution is the potential impact of climate change on erosion rates due to differences in efficiency of glacial and non-glacial erosion processes. The climate-sensitive rate and spatial distribution of erosion can be as important as the tectonic environment in determining the development of mountain ranges. To evaluate properly how glacial erosion influences orogenic processes and reflects climate variability, it is necessary to understand how ice dynamics control erosion rates. The Patagonian Andes are a unique laboratory for documenting glacial erosion in a range of precipitation and thermal regimes, as zonal atmospheric circulation in the region creates strong latitudinal gradients. We will present relevant findings from two tidewater glaciers in Chilean Patagonia: San Rafael glacier, which drains the northern portion of the North Patagonian Icefield (46.6S, 74W), and Marinelli glacier, the largest glacier in the Cordillera Darwin of Tierra del Fuego (54.6S, 69W). Both glaciers have been in steady retreat during the latter half of the 20th century, and both calve into a fjord or lagoon, which provides an efficient trap for the sediment eroded by the glacier and deposited at the calving front. The reconstructed flux of ice into the glaciers is compared to the retreat of the ice fronts and to the sediment flux to examine the influence of ice dynamics on the rate of glacier erosion. NCEP-NCAR Reanalysis climate data, adjusted to local conditions by correlation with automatic weather stations installed at the glacier termini and coupled to a model of orographic enhancement of precipitation over the glacier basin, were used to reconstruct the daily precipitation input into and ablation output from the glaciers during the last 50 years. The sediment flux out of the glaciers during this period was calculated from acoustic reflection profiles of the sediments accumulated in the proglacial fjords, and used to infer erosion rates. Preliminary results indicate 1) that high rates of retreat of the ice front occur during years in which the total input of snow into the glacier is balanced by the total ablation, and hence the residual flux of ice at the terminus is insufficient to compensate for the calving, and 2) that the highest basin- wide erosion rates reflect years in which total ice accumulation is lower and retreat rates are high. Interestingly, basin-wide erosion rates from these glaciers are up to an order of magnitude higher than long- term exhumation rates derived from detrital apatite thermochronometry in the basins, indicating that current rates of erosion far exceed long-term rates, and are reflective of periods of warming climate and enhanced glacial retreat.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFM.C14A..07K
- Keywords:
-
- 0774 Dynamics;
- 1621 Cryospheric change (0776);
- 1815 Erosion;
- 1827 Glaciology (0736;
- 0776;
- 1863);
- 3022 Marine sediments: processes and transport