An Attempt To Estimate The Contribution Of Variability Of Wetland Extent On The Variability Of The Atmospheric Methane Growth Rate In The Years 1993-2000.
Abstract
The atmospheric methane growth rate presents lots of seasonal and year-to-year variations. Large uncertainties still exist in the relative part of differents sources and sinks on these variations. We have considered, in this study, the main natural sources of methane and the supposed main variable source, i.e. wetlands, and tried to simulate the variations of their emissions considering the variability of the wetland extent and of the climate. For this study, we use the methane emission model of Walter et al. (2001) and the quantification of the flooded areas for the years 1993-2000 obtained with a suite of satellite observations by Prigent et al. (2001). The data necessary to the Walter's model are obtained with simulation of a dynamic global vegetation model ORCHIDEE (Krinner et al. (2005)) constrained by the NCC climate data (Ngo-Duc et al. (2005)) and after imposing a water-saturated soil to approach productivity of wetlands. We calculate global annual methane emissions from wetlands to be 400 Tg per year, that is higher than previous results obtained with fixed wetland extent. Simulations are realised to estimate the part of variability in the emissions explained by the variability of the wetland extent. It seems that the year-to-year emission variability is mainly explained by the interannual variability of wetland extent. The seasonnal variability is explained for 75% in the tropics and only for 40% in the north of 30°N by variability of wetlands extend. Finally, we compare results with a top-down approach of Bousquet et al.(2006).
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFM.B33B1190R
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling (0412;
- 0793;
- 1615;
- 4805