Chemical Composition and Cloud Condensation Nuclei Properties of Marine Aerosols during the 2005 Marine Stratus Experiment
Abstract
Marine aerosol chemical composition and cloud condensation nuclei (CCN) spectrum were determined on board the DOE G1 aircraft during the Marine Stratus Experiment conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosol components, including sea-salt- (sodium, chloride, magnesium, methansulfonate) and terrestrial/pollution-derived (ammonium, sulfate, nitrate, organics, potassium, and calcium) were measured using the particle-into-liquid sampler-ion chromatography technique and an Aerodyne AMS at a time resolution of 4 min and 30 s, respectively, both covering the size range of ~0.08 to 1.5 micrometers. The CCN spectrum was determined at a 1-s time resolution covering a supersaturation range between 0.02% and 1%. The accumulation mode particle size- number distribution was measured using a passive cavity aerosol spectrometer probe; the cloud droplet size- number distribution was determined using a Cloud Aerosol Probe. During the campaign sulfate/organic aerosols were always present, sea-salt aerosols were observed on half of the flights, and no dust or biomass burning contribution was noted as calcium and potassium were always below their limits-of-detection. Based on CCN spectra and cloud droplet number concentrations, the typical supersaturation of the marine stratus clouds was ~0.06%, corresponding to a CCN critical diameter between 0.1 and 0.2 micrometer. This large critical diameter makes the aerosol chemical composition measured appropriate for investigating the CCN properties and marine stratus clouds. We note that while sea-salt aerosols and sulfate aerosols were most likely externally mixed, the ensemble exhibits similar CCN properties irrespective of the relative mass concentrations of these two types of aerosols, owing partly to the similar activation properties of NaCl and (NH4)2SO4 aerosols, and that sea-salt particles were larger but fewer, accounting for a small fraction of cloud droplets. The organics did not appear to have significantly affected the CCN properties of the aerosols, suggesting that they were aged and soluble. Back trajectory calculations show that the time elapsed since their most recent land contact was always greater than 1 day.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFM.A23B0964L
- Keywords:
-
- 0300 ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0305 Aerosols and particles (0345;
- 4801;
- 4906);
- 0320 Cloud physics and chemistry;
- 0322 Constituent sources and sinks