Atmospheric Chemistry of CF3CF=CH2: Reactions With Cl Atoms, OH Radicals and Ozone
Abstract
The detrimental effects of chlorine chemistry on stratospheric ozone levels are well established. Consequently, there has been a concerted international effort to find replacements for chlorofluorocarbons (CFCs) used previously as electronic equipment cleaners, heat transfer agents, refrigerants, and carrier fluids for lubricant deposition. The replacements for CFCs, hydrofluorocarbons (HFCs) and hydrofluorochlorocarbons (HCFCs), have found widespread industrial use over the past decade. Unsaturated fluorinated hydrocarbons are a new class of compounds which have been developed to replace CFCs and HFCs in air condition units. Prior to any large-scale industrial use an assessment of the atmospheric chemistry, and hence environmental impact, of these compounds is needed. To address this need the atmospheric chemistry of CF3CF=CH2 was investigated. Smog chamber/FTIR techniques were used to determine the following properties for this compound: (i) kinetics of reactions with chlorine atoms (ii) kinetics of reactions with hydroxyl radicals (iii) kinetics of reactions with ozone, (iv) atmospheric lifetimes, (v) atmospheric degradation mechanism, and (vi) global warming potentials. The results are discussed with regard to the environmental impact of CF3CF=CH2 and the atmospheric chemistry of unsaturated fluorinated hydrocarbons.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFM.A21F0895S
- Keywords:
-
- 0317 Chemical kinetic and photochemical properties;
- 0365 Troposphere: composition and chemistry;
- 0399 General or miscellaneous