The Hemisphere-scale Stratospheric Impact of the Chisholm (Alberta) PyroCumulonimbus Eruption
Abstract
Extreme pyrocumulonimbus (pyroCb) blowups that polluted the lower stratosphere with smoke and other biomass burning emissions have been documented in the literature to have occurred on at least five separate occasions. However our understanding of the frequency and scale of these events is still far from complete. One pyroCb case study in the literature, the Chisholm Fire in Alberta in May 2001, was restricted to the convective phase and its immediate aftermath (Fromm and Servranckx, Geophys. Res. Lett., 2003). Here we describe the stratospheric impact of the Chisholm pyroCb. We present nadir and imaging satellite views of the post-pyroCb plume by the Multi-angle Imaging Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradiomenter (MODIS), Total Ozone Mapping Spectrometer (TOMS), and a broad array of profile measurements, space- and ground-based. These include the Polar Ozone and Aerosol Measurement (POAM) III, Stratospheric Aerosol and Gas Experiment (SAGE) II, Halogen Occultation Experiment (HALOE), and seven ground-based lidars. We report that the Chisholm pyroCb was the singular cause of a hemispheric stratospheric aerosol increase in northern spring/summer of 2001. The smoke plume on the day after the pyro-eruption reached heights of 15 km, 4 km above the tropopause, was optically opaque at the tropopause, and caused unprecedented, large values of TOMS aerosol index. This plume eventually resulted in a doubling of zonal-average aerosol optical depth in the stratospheric middleworld and overworld. The meridional spread of the plume is confirmed from the tropics (20°N) to the high Arctic (79°N) within the first month. The stratospheric Chisholm smoke became a hemispheric phenomenon in midlatitudes and persisted for at least three months there and in the northern tropics. This work contains the first reported stratospheric smoke layers measured by lidar at Ny Älesund, Kühlungsborn, Garmisch Partenkirchen, Boulder, and Mauna Loa, and the second such reports from the Esrange lidar.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFM.A11B0856F
- Keywords:
-
- 0305 Aerosols and particles (0345;
- 4801;
- 4906);
- 0345 Pollution: urban and regional (0305;
- 0478;
- 4251);
- 3314 Convective processes;
- 3362 Stratosphere/troposphere interactions