Mechanism Reduction for the Formation of Secondary Organic Aerosol for Integration into a 3-Dimensional Regional Air Quality Model
Abstract
Secondary Organic Aerosol (SOA) plays an important role in atmospheric chemistry, regional and global climate, and human health. It is important to develop a reduced yet accurate chemical mechanism for the formation of both ozone and SOA in a regional air quality model to alleviate CPU time and memory burden. A subset of a near-explicit Master Chemical Mechanism (MCM v3.1) describing alpha-pinene oxidation (976 reactions and 331 compounds), coupled with a gas/particle absorptive partitioning model, is used as a benchmark for the study of SOA formation within a box model. Results from the detailed mechanism show that total SOA mass decreases as the NOx/HC ratio increases. Aerosol fractions for the PAN-like compounds and the nitrates increase with increasing NOx/HC ratio, and the aerosol fractions for the organic peroxides and organic acids decrease with increasing NOx/HC ratio. In addition, 28 out of 149 condensable products are identified as important compounds for the SOA formation and mechanism reduction purposes. The detailed alpha-pinene oxidation mechanism was reduced systematically through five mechanism reduction techniques, in sequence, to create reduced mechanism preserving the properties of the original mechanism, while using less species. Specifically, a directed relation graph method with error propagation (DRGEP) based on resolving species interaction has been shown, in the first stage, to remove efficiently a large number of redundant species and reactions under a wide range of conditions. Next, the application of principal component analysis (PCA) of the rate sensitivity matrix and the use of quasi-steady-state approximation (QSSA) have been used to eliminate some reactions and remove some QSS species, respectively. The fourth stage is to use an iterative screening method to remove redundant species and reactions simultaneously. Last, a new lumping approach, depended on the NOx/HC ratio, is developed and implemented to reduce the number of species in the final stage. This methodology results in a reduction ratio of 3 for the number of species and reactions compared with the full mechanism. The simplified mechanism is demonstrated to reproduce well the important gas and aerosol phase species, four functional groups (PANs, Nitrates, organic peroxides, and organic acids), and the total SOA mass accurately within 16% under a wide range of conditions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2006
- Bibcode:
- 2006AGUFM.A11A0817X
- Keywords:
-
- 0305 Aerosols and particles (0345;
- 4801;
- 4906);
- 0317 Chemical kinetic and photochemical properties;
- 0345 Pollution: urban and regional (0305;
- 0478;
- 4251);
- 0365 Troposphere: composition and chemistry;
- 0478 Pollution: urban;
- regional and global (0345;
- 4251)