Theoretical light curves for deflagration models of type Ia supernova
Abstract
Aims.We present synthetic bolometric and broadband UBVRI light curves of SNe Ia for four selected 3D deflagration models of thermonuclear supernovae.
Methods: .The light curves are computed with the 1D hydro code stella, which models (multigroup timedependent) nonequilibrium radiative transfer inside SN ejecta. Angleaveraged results from 3D hydrodynamical explosion simulations with the composition determined in a nucleosynthetic postprocessing step served as the input to the radiative transfer model.
Results: .The predicted model {UBV} light curves do agree reasonably well with the observed ones for SNe Ia in the range of low to normal luminosities, although the underlying hydrodynamical explosion models produced only a modest amount of radioactive {}^{56}Ni(i.e. 0.240.42 M_{☉}) and relatively low kinetic energy in the explosion (less than 0.7 × 10^{51} erg). The evolution of predicted B and V fluxes in the model with a {}^{56}Nimass of 0.42 M_{☉} follows the observed decline rate after the maximum very well, although the behavior of fluxes in other filters deviates somewhat from observations, and the bolometric decline rate is a bit slow. The material velocity at the photospheric level is on the order of 10^{4} km s^{1} for all models. Using our models, we check the validity of Arnett's rule, relating the peak luminosity to the power of the deposited radioactive heating, and we also check the accuracy of the procedure for extracting the {}^{56}Nimass from the observed light curves.
Conclusions: .We find that the comparison between theoretical light curves and observations provides a useful tool to validate SN Ia models. The steps necessary for improving the agreement between theory and observations are set out.
 Publication:

Astronomy and Astrophysics
 Pub Date:
 July 2006
 DOI:
 10.1051/00046361:20054594
 arXiv:
 arXiv:astroph/0603036
 Bibcode:
 2006A&A...453..229B
 Keywords:

 stars: supernovae: general;
 hydrodynamics;
 radiative transfer;
 methods: numerical;
 Astrophysics
 EPrint:
 14 pages, 17 figures, 4 tables