On the renormalized volumes for conformally compact Einstein manifolds
Abstract
We study the renormalized volume of a conformally compact Einstein manifold. In even dimensions, we derive the analogue of the Chern-Gauss-Bonnet formula incorporating the renormalized volume. When the dimension is odd, we relate the renormalized volume to the conformal primitive of the $Q$-curvature. We show how all the global information come from the Scattering.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- December 2005
- DOI:
- 10.48550/arXiv.math/0512376
- arXiv:
- arXiv:math/0512376
- Bibcode:
- 2005math.....12376C
- Keywords:
-
- Mathematics - Differential Geometry;
- Mathematics - Mathematical Physics;
- Mathematical Physics;
- 53C21;
- 58J50
- E-Print:
- 21 pages