Mixed zeta functions and application to some lattice points problems
Abstract
We consider zeta functions: $Z(f ;P ;s)=\sum_{\m \in \N^{n}} f(m_1,..., m_n) P(m_1,..., m_n)^{-s/d}$ where $P \in \R [X_1,..., X_n]$ has degree $d$ and $f$ is a function arithmetic in origin, e.g. a multiplicative function. In this paper, I study the meromorphic continuation of such series beyond an a priori domain of absolute convergence when $f$ and $P$ satisfy properties one typically meets in applications. As a result, I prove an explicit asymptotic for a general class of lattice point problems subject to arithmetic constraints.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- May 2005
- DOI:
- 10.48550/arXiv.math/0505558
- arXiv:
- arXiv:math/0505558
- Bibcode:
- 2005math......5558E
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Algebraic Geometry;
- 11M41;
- 11P21;
- 11N25;
- 11N37
- E-Print:
- 26 pages