Multicomponent Bell inequality and its violation for continuousvariable systems
Abstract
Multicomponent correlation functions are developed by utilizing d outcome measurements. Based on multicomponent correlation functions, we propose a Bell inequality for bipartite d dimensional systems. Violation of the Bell inequality for continuousvariable (CV) systems is investigated. The violation of maximally entangled states can exceed the Cirel’son bound; the maximal violation is 2.969 81. For finite values of the squeezing parameter, the violation strength of CV states increases with dimension d . Numerical results show that the violation strength of CV states with finite squeezing parameters is stronger than that of maximally entangled states.
 Publication:

Physical Review A
 Pub Date:
 March 2005
 DOI:
 10.1103/PhysRevA.71.032107
 arXiv:
 arXiv:quantph/0310102
 Bibcode:
 2005PhRvA..71c2107C
 Keywords:

 03.65.Ud;
 03.65.Ta;
 03.67.a;
 Entanglement and quantum nonlocality;
 Foundations of quantum mechanics;
 measurement theory;
 Quantum information;
 Quantum Physics
 EPrint:
 5 pages and 1 figure, rewritten version, accepted by Phys. Rev. A