Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene
Abstract
Self-assembly of a Gemini-shaped, chiral amphiphilic hexa-peri-hexabenzocoronene having two chiral oxyalkylene side chains, along with two lipophilic side chains, yields graphitic nanotubes with one-handed helical chirality. The nanotubes are characterized by an extremely high aspect ratio of >1,000 and have a uniform diameter of 20 nm and a wall thickness of 3 nm. The nanotubes with right- and left-handed helical senses were obtained from the (S)- and (R)-enantiomers of the amphiphile, respectively, due to an efficient translation of point chirality into supramolecular helical chirality. The (S)- and (R)-enantiomers coassemble at varying mole ratios to give nanotubes, whose circular dichroism profiles are almost unchanged over a wide range of the enantiomeric excess of the amphiphile (100-20%). The high level of chirality amplification thus observed indicates a long-range cooperativity in the self-assembling process. In sharp contrast, a hexabenzocoronene amphiphile with chiral lipophilic side chains did not form nanotubular assemblies. The present work demonstrates the majority rule in noncovalent systems and also may provide a synthetic strategy toward realization of molecular solenoids.
- Publication:
-
Proceedings of the National Academy of Science
- Pub Date:
- August 2005
- DOI:
- Bibcode:
- 2005PNAS..10210801J
- Keywords:
-
- chirality;
- self-assembly;
- Chemistry, Physical Sciences