Computational model of the cAMP-mediated sensory response and calcium-dependent adaptation in vertebrate olfactory receptor neurons
Abstract
We develop a mechanistic mathematical model of the G-protein coupled signaling pathway responsible for generating current responses in frog olfactory receptor neurons. The model incorporates descriptions of ligand-receptor interaction, intracellular transduction events involving the second messenger cAMP, effector ion-channel activity, and calcium-mediated feedback steps. We parameterized the model with respect to suction pipette current recordings from single cells stimulated with multiple odor concentrations. The proposed model accurately predicts the receptor-current response of the neuron to brief and prolonged odorant exposure and is able to produce the adaptation observed under repeated or sustained stimulation.
- Publication:
-
Proceedings of the National Academy of Science
- Pub Date:
- July 2005
- DOI:
- Bibcode:
- 2005PNAS..10210415D
- Keywords:
-
- Applied Mathematics, Physical Sciences