Basic avian pulmonary design and flow-through ventilation in non-avian theropod dinosaurs
Abstract
Birds are unique among living vertebrates in possessing pneumaticity of the postcranial skeleton, with invasion of bone by the pulmonary air-sac system. The avian respiratory system includes high-compliance air sacs that ventilate a dorsally fixed, non-expanding parabronchial lung. Caudally positioned abdominal and thoracic air sacs are critical components of the avian aspiration pump, facilitating flow-through ventilation of the lung and near-constant airflow during both inspiration and expiration, highlighting a design optimized for efficient gas exchange. Postcranial skeletal pneumaticity has also been reported in numerous extinct archosaurs including non-avian theropod dinosaurs and Archaeopteryx. However, the relationship between osseous pneumaticity and the evolution of the avian respiratory apparatus has long remained ambiguous. Here we report, on the basis of a comparative analysis of region-specific pneumaticity with extant birds, evidence for cervical and abdominal air-sac systems in non-avian theropods, along with thoracic skeletal prerequisites of an avian-style aspiration pump. The early acquisition of this system among theropods is demonstrated by examination of an exceptional new specimen of Majungatholus atopus, documenting these features in a taxon only distantly related to birds. Taken together, these specializations imply the existence of the basic avian pulmonary Bauplan in basal neotheropods, indicating that flow-through ventilation of the lung is not restricted to birds but is probably a general theropod characteristic.
- Publication:
-
Nature
- Pub Date:
- July 2005
- DOI:
- 10.1038/nature03716
- Bibcode:
- 2005Natur.436..253O