Evolution of the dispersionless injection boundary associated with substorms
Abstract
One manifestation of energetic particle acceleration during magnetospheric substorms is the sudden appearance of particle injections into the inner magnetosphere, often observed near geosynchronous orbit. Injections that show simultaneous flux increases in all energy ranges of a detector are called dispersionless injections, and are most often observed in a narrow region around local midnight. In these events it is assumed that the satellite is located close to or inside the region where acceleration and/or transport processes are taking place, called the injection region. We present a study of the location, extent and temporal evolution of the injection region, based on simulation results of a model of the expansion of the electric and magnetic fields associated with a substorm. The model simulates the fields during a substorm onset with an electric field and consistent magnetic field pulse that propagates towards the Earth with a decreasing speed. Our simulation shows that the dispersionless injection boundary can be considered coincident with the leading edge of the pulse field, which transports particles toward the Earth across a certain range of local time. Under the same model field, the dispersionless injection boundary shifts eastward for electrons and westward for protons, consistent with the observation results deduced from statistical analysis of multiple spacecraft measurements.
- Publication:
-
Annales Geophysicae
- Pub Date:
- March 2005
- DOI:
- 10.5194/angeo-23-877-2005
- Bibcode:
- 2005AnGeo..23..877S