Coupled Teleconnections and River Dynamics for Enhanced Hydrologic Forecasting in the Upper Colorado River Basin USA
Abstract
Accuracy of water supply forecasts has improved for some river basins in the western U.S.A. by integrating knowledge of climate teleconnections, such as El Niño/Southern Oscillation (ENSO), into forecasting routines, but in other basins, such as the Colorado River Basin (CRB), forecast accuracy has declined (Pagano et al. 2004). Longer lead time and more accurate seasonal forecasts, particularly during floods or drought, could help reduce uncertainty and risk in decision-making and lengthen the period for planning more efficient and effective strategies for water use and ecosystem management. The goal of this research is to extend the lead time for snowmelt hydrograph estimation by 4-6 months (from spring to the preceding fall), and at the same time increase the accuracy of snowmelt runoff estimates in the Upper CRB (UCRB). We hypothesize that: (1) UCRB snowpack accumulation and melt are driven by large scale climate modes, including ENSO, PDO and AMO, that establish by fall and persist into early spring; (2) forecast analysis may begin in the fall prior to the start of the primary snow accumulation period and when energy to change the climate system is decreasing; and (3) between fall and early spring, streamflow hydrographs will amplify precipitation and temperature signals, and thus will evolve characteristically in response to wet, dry or average hydroclimatic conditions. Historical in situ records from largely unregulated river reaches and undeveloped time periods of the UCRB are used to test this hypothesis. Preliminary results show that, beginning in the fall (e.g., October or November) streamflow characteristics, including magnitude, rate of change and variability, as well as timing and magnitude of fall/early winter and late winter/early spring season flow volumes, are directly correlated with the magnitude of the upcoming snowmelt runoff (or annual basin yield). The use of climate teleconnections to determine characteristic streamflow responses in the UCRB advances understanding of atmosphere/land surface processes and interactions in complex terrain and subsequent effects on snowpack development and runoff (i.e., water supply), and may be used to improve seasonal forecast accuracy and extend lead time to develop more efficient and effective management strategies for water resources and ecosystems.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2005
- Bibcode:
- 2005AGUFMGC33A1246M
- Keywords:
-
- 1655 Water cycles (1836);
- 1863 Snow and ice (0736;
- 0738;
- 0776;
- 1827);
- 3322 Land/atmosphere interactions (1218;
- 1631;
- 1843);
- 4805 Biogeochemical cycles;
- processes;
- and modeling (0412;
- 0414;
- 0793;
- 1615;
- 4912);
- 9350 North America