Field Studies in Science Teacher Preparation Programs: Examples of Research-Oriented Earth and Environmental Science Field Projects for Pre-service and In-service Teachers
Abstract
Science teaching reforms of the past 10 to 20 years have focused on a pedagogical shift from verification-style laboratory exercises, toward hands-on and inquiry-based constructivist teaching methods. Such methods, however, require teachers to be proficient in more than just basic content and teaching strategies. To be effective teachers, these professionals must also be skilled in the design and implementation of research-style investigations. At Loyola College in Maryland, topics in the earth and environmental sciences are used as the basis for field research projects that teach our students science content, along with how to design age-appropriate investigative activities and how to implement them in a stimulating, inquiry-based learning environment. Presented here are examples of three projects, demonstrating how these themes are woven throughout our pre- and in-service teacher preparation programs, at both undergraduate and graduate levels. 1. Watershed Studies - In our undergraduate, pre-service, elementary education teacher preparation program, students design and implement a water quality study in a local watershed. In the classroom, students use topographic maps and aerial photographs to delineate the watersheds' boundaries, to identify current land use patterns, and to select appropriate locations on the trunk stream for testing. Water testing at these sites is conducted during field trips, with data analysis and interpretation performed on-site. On-site work allows students to make connections between stream water quality and adjacent land use practices. Students then relate the content and research results to science teaching standards, in order to develop a unit-plan for use in their future classrooms. 2. Land Use Assessment - In our graduate, in-service, elementary and middle school science program, a local stream valley is used as the basis for an analysis of potential land use changes. Students first construct a topographic base map of the area, and then generate current land use/cover type maps. Soil texture, moisture, and depth data, as well as slope angle and infiltration/runoff potential information are collected throughout the map area, in order to assess the impact of proposed residential or agricultural land use changes. Students create maps delineating suitability and erosion potential, based upon their topographic maps and site data. A proposal for an analogous study, near the students' schools, is developed for use with their own students, as culmination of the project. 3. Climate Change - In our graduate, in-service, middle and high school earth science program, students are exposed to field research methods during a summer research project investigating relict shorelines of the Chesapeake Bay. In this project, students collect subsurface geophysical, sedimentological, and biological data through the use of ground penetrating radar, vibracoring, and hand-augering equipment. By combining the stratigraphy revealed in the radar records, with paleoenvironmental interpretations from sediment analyses and age estimates from fossil material encountered, students are able to construct cross sections of the region, delineating littoral deposits stemming from climate-induced, higher-than-present sea-level incursions. Students then prepare field and laboratory exercises for their own classrooms, relating the design and discoveries of the study to their own students. The students also participate in the preparation and presentation of their study in national and international scientific venues.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2005
- Bibcode:
- 2005AGUFMED23A1235O
- Keywords:
-
- 0830 Teacher training;
- 1879 Watershed;
- 4900 PALEOCEANOGRAPHY (0473;
- 3344);
- 6334 Regional planning (1880)