Negative Magnetic Anomalies Observed in the Central West Antarctica (CWA) Aerogeophysical Survey Over the West Antarctic Ice Sheet (WAIS), Whose Sources are Volcanic Centers (e.g. Mt Resnik) at the Base of the ice >780 Ka
Abstract
Analysis of a block of coincident aeromagnetic and radar ice-sounding data (from the CWA aerogeophysical survey) over the WAIS reveals ~1000 50->1000-nT, shallow -source, ``volcanic" magnetic anomalies, interpreted as caused by late Cenozoic alkaline magmatism associated with the West Antarctic rift system (WR). About 400 of these anomalies (conservatively selected) have topographic expression at the bed of the WAIS; >80% of these topographic features have <200 m bed relief. There are ~100 short-wavelength, steep-gradient, negative magnetic anomalies observed in the CWA survey, or ~10% of the ~1000 ``volcanic" anomalies. These negative anomalies indicate volcanic activity during a time of magnetic field reversal from normal to reversed polarity at least as old as 780 Ka (the Brunes-Matuyama reversal). The sources of ~18 of the anomalies, half concentrated in the area of the WAIS divide, have high bed-elevation (above sea level after ice removal and glacial rebound), very magnetic topography of high bed relief, up to 2 km. Five of these peaks have associated negative magnetic anomalies. One of the high topographic features, Mt. Resnik, marked by a complex negative anomaly, is a conical peak 300 m below the surface of the WAIS, and has ~2 km topographic relief. We interpret a magnetic model fit to this anomaly as comprising reversely magnetized (in the present field direction), 0.5-2.5-km thick volcanic flows at the summit overlying normally magnetized flows. Published models (1996) reported for the Hut Point anomaly, at Ross Island, Antarctica, a similar anomaly to Mt. Resnik, also required both normal and reversed magnetizations correlated with drill holes into dated volcanic flows (also part of the late Cenozoic WR) crossing the Brunhes-Matuyama boundary (780 Ka). Because of their form similar to exposed volcanoes in the WAIS area with edifices primarily comprising subaerially-erupted, very magnetic volcanic flows, which have resisted glacial erosion, Behrendt et al. (2004) interpreted that these 18 high-topograpy, high-relief sources are subglacial volcanoes (including the five >780 Ka) erupted subaerially during a period when the WAIS was absent.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2005
- Bibcode:
- 2005AGUFM.V13D0570B
- Keywords:
-
- 4207 Arctic and Antarctic oceanography (9310;
- 9315);
- 4540 Ice mechanics and air/sea/ice exchange processes (0700;
- 0750;
- 0752;
- 0754);
- 8100 TECTONOPHYSICS;
- 8400 VOLCANOLOGY