Genome-Scale Variation of Tubeworm Symbionts
Abstract
Hydrothermal vent tubeworms are completely dependent on their bacterial symbionts for nutrition. Despite this dependency, many studies have concluded that bacterial symbionts are acquired anew from the environment, every generation rather than the more reliable mode of symbiont transmission from parent directly to offspring. Ribosomal 16S sequences have shown little variation of symbiont phylogeny from worm to worm, but higher resolution genome-scale analyses have found that there is genomic heterogeneity between symbionts from worms in different environments. What genes can be "spared," while resulting in an intact symbiosis? Have symbionts from one environment gained physiological capabilities that make them more fit in that environment? In order to answer these questions, subtractive hybridization was used on symbionts of Riftia pachyptila tubeworms from different environments to gain insight into which genes are present in one symbiont and absent in the other. Many genes were found to be unique to each symbiont and these results will be presented. This technique will be applied to answer many fundamental questions regarding microbial symbiont evolution to a specific physico-chemical environment, to a different host species, and more.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2005
- Bibcode:
- 2005AGUFM.T31B0501R
- Keywords:
-
- 0410 Biodiversity;
- 0450 Hydrothermal systems (1034;
- 3017;
- 3616;
- 4832;
- 8135;
- 8424);
- 0465 Microbiology: ecology;
- physiology and genomics (4840);
- 4840 Microbiology and microbial ecology (0465);
- 4872 Symbiosis