Low Viscosity Zone and Mantle Dynamics
Abstract
We use a three-dimensional mantle convection model to explore the influence of rheological properties on variations in viscosity and mantle dynamics. In particular the interaction of a temperature-, pressure- and stress-dependent viscosity has been studied. In temperature- and stress-dependent viscosity convection, a stagnant lid mode of convection arises if the viscosity is strongly dominated by temperature. This is linked to a strong viscosity drop over the top boundary layer with little further viscosity variations with depth. An almost constant viscosity-depth profile with only a maximum at mid-depth is obtained, if the system is strongly influenced by the stress dependence. This is coupled to a mobilised surface which takes part in the convective process. A low viscosity zone (LVZ) at shallow depths and a viscosity peak at mid-depth have been obtained for the balanced combination of the temperature and stress dependence of the viscosity. The appearance of both zones correlates with the appearance of plate-like motion. Small rigid surface pieces sink into the interior. But subduction is faster than the new creation of plates leading only to an occassional occurrence of the features. Additional pressure dependence of the viscosity helps to slow down subduction speed, so that plates and the LVZ exist over long times. Further the long-wavelength flow resulting in convection with depth-dependent properties leads to extended plates and a more global LVZ.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2005
- Bibcode:
- 2005AGUFM.T23A0523S
- Keywords:
-
- 0545 Modeling (4255);
- 8120 Dynamics of lithosphere and mantle: general (1213);
- 8124 Earth's interior: composition and state (1212;
- 7207;
- 7208;
- 8105);
- 8162 Rheology: mantle (8033)