Investigating Dynamic Behavior in Experimental Capillary Pressure-Saturation Curves Using a Lattice-Boltzmann Model
Abstract
The capillary pressure-saturation curve is widely used to characterize hydraulic properties of porous media. It is often assumed that curves measured under equilibrium or steady-state flow conditions can be applied to transient flow conditions, and vice versa. Yet, substantial experimental evidence suggests that capillary pressure-saturation curves obtained during transient conditions differ from those obtained under equilibrium or steady-state conditions. It has been shown that the capillary pressure-saturation curve changes with the inflow/outflow rate applied. The exact cause of the shift is not yet fully understood, but most likely it is caused by interfacial phenomena at the pore scale. In this investigation, results from wetting/drying experiments on a column of packed glass beads under various inflow/outflow rates will be presented. The dynamic effects have been examined using conceptual 2D/3D lattice-Boltzmann (LB) simulations. The LB model used for these simulations is the multi-component model developed by Shan and Chen. The LB model is generally considered a mesoscale method, which includes pore scale properties and makes it possible to infer macroscopic dynamics from pore scale properties. The LB model also allows for representation of complex pore space geometries. These features of the LB model make it highly suitable for studying interfacial phenomena. The conceptual LB simulations provide insights into pore-scale interfacial phenomena and demonstrate the dynamic behavior observed in the experiments. The scaling of time and space from LB parameters to physical parameters was performed to make comparisons between simulation and experimental results possible.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2005
- Bibcode:
- 2005AGUFM.H33A1365P
- Keywords:
-
- 1839 Hydrologic scaling;
- 1847 Modeling;
- 1849 Numerical approximations and analysis;
- 1875 Vadose zone