Nitrogen Transport from Atmospheric Deposition and Contaminated Groundwater to Surface Waters on a Watershed Scale.
Abstract
Increasing nitrate contamination of surface water and groundwater is a problem in regions of intensive agriculture and near urban wastewater treatment facilities that land-apply biosolids. The 15N composition of groundwater nitrate has been used to assess potential sources of nitrogen contamination. But because of transformations of nitrogen within the hydrological system, contaminant source tracing with nitrogen isotopes has been complicated. We have used multiple isotope tracers of nitrate (15N, 17O, 18O) to distinguish between different N contamination sources, areas of extensive denitrification, and areas of atmospheric N deposition on the NC coastal plain and piedmont. Areas of extensive denitrification are often associated with hydric soils. The distribution of hydric soils on field and watershed scales correlates with surface and ground water quality degradation. The distribution of hydric soils may thus be an important element in prediction of environmental impacts of agriculture. Transport of atmospheric nitrogen into surface waters as indicated by the 17O of nitrate is event driven. Most surface waters in our study area have low concentrations of nitrate 17O, indicating that the importance of atmospheric N has been overestimated in riverine N flux from watersheds. However, when the atmospheric N flux is integrated over a discharge event, atmospheric N can approach 25 % of the total N riverine flux in urban areas. More work needs to be completed with multiple isotopic tracers and GIS analysis on watershed scales. Using a GIS / isotope approach, areas where the isotopic signature has been affected by denitrification can be predicted, and remediation efforts can be focused on potential areas of N contamination where extensive denitrification is unlikely to occur.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2005
- Bibcode:
- 2005AGUFM.B54A..06S
- Keywords:
-
- 0469 Nitrogen cycling;
- 0478 Pollution: urban;
- regional and global (0345;
- 4251);
- 0496 Water quality