Time Resolved Measurement of Ecosystem-Atmosphere NH3 Exchange Using the Eddy Covariance Technique
Abstract
Quantifying ammonia fluxes between the land surface and atmosphere is required for effective control of air quality, improving agricultural practices, and understanding natural ecosystem function. Ammonia (NH3) is emitted in large but uncertain amounts from animal agriculture, in lesser amounts from imperfect use of nitrogen fertilizers in crop agriculture, from catalytic converters used on automobiles and other energy related industrial processes, and exchanged between the ecosystem and atmosphere by natural ecosystem processes on vast spatial scales. To address the need for accurate, time-resolved NH3 flux measurements, we have developed an eddy covariance (EC) instrument for direct measurements of NH3 flux. EC flux measurements of NH3 were not previously possible because instruments were not sufficiently sensitive at high frequencies required to capture rapid variations in surface layer NH3 concentrations. To overcome this hurdle we combined a tunable-diode-laser (TDL) spectrometer with a fast-response NH3 sampling inlet and automated pulse-response calibration system. Laboratory tests of the inlet system demonstrate that the response to 10 ppb step in NH3 concentration is well described by a double exponential model with (1/e) times of 0.3 (85% response) and 1.5 (15% response) seconds. This response combined with a routinely measured instrument stability of ~ 0.1 ppb (on 30 minute timescales) indicates that the instrumental contribution to noise in NH3 flux measurements is ~ 0.2 umol NH3 m-2 hr-1, sufficient to stringently test models for NH3 exchange under most conditions. Recent results of field work to verify the instrument performance and observe examples of NH3 exchange will be presented.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2005
- Bibcode:
- 2005AGUFM.B54A..04F
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling (0412;
- 0793;
- 1615;
- 4805;
- 4912);
- 0426 Biosphere/atmosphere interactions (0315);
- 0469 Nitrogen cycling;
- 0470 Nutrients and nutrient cycling (4845;
- 4850)