Transport and Microphysics of Aerosols Released by Collapse and Fire of the World Trade Center on September 11, 2001 as Observed by AERONET and MISR
Abstract
Atmospheric pollution has been studied intensively during the last several decades for its impact on climate, visibility, atmospheric chemistry, and public health. Here we consider the aftermath of the catastrophic aerosol release produced by the collapse of the World Trade Center (WTC) in New York City (NYC) on September 11, 2001. The north and south WTC buildings were attacked at 0846 EDT and 0903 EDT, respectively, on September 11, 2001. The collapse of the WTC South Tower at 0959 EDT followed by the crash of the North Tower at 1029 EDT instantaneously pulverized a vast amount of building material, that was reduced to dust and smoke in nearby streets and the atmosphere above. The remains of the WTC complex covered a 16-acre area known as Ground Zero. Intensive combustion continued until September 14, with temperatures occasionally exceeding 1000 C, producing a steady, elevated source of hazardous gases and aerosols. A detailed spatial and temporal description of the pollution fields' evolution is needed to fully understand their environmental and health impact, but many existing in situ aerosol monitoring stations in the vicinity of the WTC were completely plugged with dust immediately after the collapse. However, the aerosol plume was remotely sensed from the ground and from space. Here we combine numerical modeling of micrometeorological fields and pollution transport using the RAMS/HYPACT modeling system with AERONET and MISR retrievals, to realistically reconstruct plume evolution. AERONET collected plume data in NYC from the roof of the Goddard Institute for Space Studies (GISS) in Upper Manhattan. In NYC, aerosol optical depth was rather low until 1800 UTC on September 12; then it increased to ~0.3 (at 440 nm) by 2130 UTC. On September 13, the optical depth was slightly elevated in the morning and increased further beginning at 1700 UTC, reaching ~0.30 by 2000-2200 UTC. The angstrom exponent increased from 1.8 on September 12 to 2.2 in the late afternoon on September 13. MISR viewed the WTC on September 12 at 1603 UTC when the plume blew southwest, reporting the plume altitude to be about 1500 m, and the regionally averaged optical depth to be 0.1 (at 558 nm), with the corresponding angstrom exponent ranging from 1.23 to 1.43. The aerosol retrievals from ground- and space-based instruments provide important constrains for our plume simulations. We were able to calculate relatively accurately the plume height, directionality, and timing. Comparison of calculated and observed column aerosol loading provided by AERONET allowed us to more reliably evaluate the magnitude of the aerosol source on September 12 and 13, 2001.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2005
- Bibcode:
- 2005AGUFM.A22B..06S
- Keywords:
-
- 0305 Aerosols and particles (0345;
- 4801;
- 4906);
- 0345 Pollution: urban and regional (0305;
- 0478;
- 4251);
- 0478 Pollution: urban;
- regional and global (0345;
- 4251);
- 0933 Remote sensing;
- 3367 Theoretical modeling