Are we living in a stringdominated universe?
Abstract
The holographic solution is a new exact solution to the Einstein field equations. It describes a compact selfgravitating object with properties similar to a black hole. Its entropy and temperature at infinity are proportional to the Hawking result. Instead of an event horizon, the holographic solution has a real spherical boundary membrane, situated roughly two Planck distances outside of the object's gravitational radius. The interior matterstate is singularity free. It consists out of string type matter, which is densely packed. Each string has a transverse extension of exactly one Planck area. This dense package of strings might be the reason, why the solution does not collapse to a singularity. The local string tension is inverse proportional to the average string length. This purely classical result has its almost exact correspondence in a recent result in string theory. The holographic solution suggest, that string theory is relevant also on cosmological scales. The large scale phenomena in the universe can be explained naturally in a string context. Due to the zero active gravitational massdensity of the strings the Hubble constant in a string dominated universe is related to its age by H t = 1. The WMAP measurements have determined H t \approx 1.02 \pm 0.02 experimentally. The nearly unaccelerated expansion in a string dominated universe is compatible with the recent supernova measurements. Under the assumption, that the cold dark matter (CDM) consists out of strings, the ratio of CDM to baryonic matter is estimated as \Omega_CDM / \Omega_b \approx 6.45. Some arguments are given, which suggest that the universe might be constructed hierarchically out of its most basic building blocks: strings and membranes.
 Publication:

arXiv eprints
 Pub Date:
 May 2004
 arXiv:
 arXiv:grqc/0405011
 Bibcode:
 2004gr.qc.....5011P
 Keywords:

 Astrophysics;
 General Relativity and Quantum Cosmology;
 High Energy Physics  Theory
 EPrint:
 23 pages, 1 figure, appendix (5 pages, 6 figures)