Troc: a proposed tropospheric sounder for chemistry and climate
Abstract
TROC has been submitted to ESA in the last call for proposals of the Earth Explorer Opportunity Missions and its focus is on tropospheric composition and chemistry-climate interactions. The mission objectives of TROC cover four research subjects. Global tropospheric chemistry: perform global measurements from space of tropospheric composition in order to improve our understanding and to constrain models of tropospheric chemistry with emphasis on tropospheric ozone. Pollution: establish the impact of mega cities of industrialised or developing countries by monitoring their pollution plumes. Biomass burning: monitor the chemical species and aerosols injected in the free troposphere during major burning episodes in the intertropical region as well as by major forest fires at other latitudes. Chemistry-climate interactions: quantify on a global scale the distributions and the sources of greenhouse gases like CO2, CH4, O3, N2O and the CFCs. Contribute to demonstration studies for monitoring from space how Montreal and Kyoto protocols are enforced as far as human impacts on atmospheric chemistry and climate are concerned. To fulfil these objectives, passive remote sensing of the troposphere has been selected as the best compromise between technical maturity and multi-species coverage. The main elements of TROC are a Fourier transform infrared (FTIR) instrument and an ultraviolet-visible (UV-vis) spectrometer, both operating in the downward-looking geometry with a 10 km diameter footprint at nadir. An ``intelligent'' pointing mirror coupled to an infrared imager is used to optimise day/night sounding down to the surface. The FTIR instrument covers at 0.1 cm-1 apodised spectral resolution 3 bands from 14 to 3.3 μ m in thermal emission and one band in solar reflected light around 2.3 μ m. The UV-vis instrument covers the regions 290-490 nm (1 nm resolution) and 520-1030 nm (2.5 nm resolution) with 43 array detectors (2 bands × 2 polarizations) in reflected/backscattered sunlight. The diurnal/nocturnal cycle is sampled with a non-sun synchronous circular orbit of 728 km altitude and 65 inclination. Global coverage between 68N and 68S is ensured by a swath of 800 km (11 pixels) and at least one clear pixel in every 100 km × 100 km area is revisited every 3 days. TROC will provide tropospheric profiles for O3, CO and CH4 (3 independent pieces of information in the troposphere) as well as total and tropospheric columns for NO2, H2CO, SO2, BrO and C2H6 together with height resolved information on tropospheric aerosols. Information on other species (H2O, CO2, N2O, CFCs, OCS, ldots) of importance for climate studies will also be obtained. The scientific/technical aspects and status of this project will be presented.
- Publication:
-
35th COSPAR Scientific Assembly
- Pub Date:
- 2004
- Bibcode:
- 2004cosp...35.4578C