Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses
Abstract
Seventy-five types of ichnofossils documented during a four-year reconnaissance study in the Upper Jurassic Morrison Formation demonstrate that highly diverse and abundant plants, invertebrates, and vertebrates occur throughout most of the Morrison or equivalent strata. Invertebrate ichnofossils, preserving the most environmentally and climatically sensitive in situ behavior of Morrison organisms, are in nearly all outcrops. Terrestrial ichnofossils record biotic processes in soil formation, indicating soil moisture and water-table levels. Freshwater ichnofossils preserve evidence of water depth, salinity, and seasonality of water bodies. Ichnofossils, categorized as epiterraphilic, terraphilic, hygrophilic, and hydrophilic (new terms), reflect the moisture regime where they were constructed. The ichnofossils are vertically zoned with respect to physical, chemical, and biological factors in the environment that controlled their distribution and abundance, and are expressed as surficial, shallow, intermediate, and deep. The sedimentologic, stratigraphic, and geographic distribution of Morrison ichnofossils reflects the environmental and climatic variations across the basin through time. Marginal-marine, tidal to brackish-water ichnofossils are mainly restricted to the Windy Hill Member. Very large to small termite nests dominate the Salt Wash Member. Similar size ranges of ant nests dominate the Brushy Basin Member. Soil bee nests dominate in the Salt Wash, decreasing in abundance through the Brushy Basin. Deeper and larger insect nests indicate more seasonal distribution of precipitation and rainfall. Shallower and smaller insect nests indicate either dry or wet substrate conditions depending on the nest architecture and paleopedogenic and sedimentologic character of the substrate. Trace-fossil indicators of flowing or standing water conditions are dominant in the Tidwell Member and in fluvial sandstones of the Salt Wash and Brushy Basin Members. Large communities of perennial, freshwater bivalve traces are abundant in the Tidwell and Brushy Basin Members but to a lesser extent in the Salt Wash Member. Shallow crayfish burrows, indicating a water-table level close to the surface (<1 m), are restricted to channel bank and proximal alluvial deposits in the Salt Wash, Recapture, and Brushy Basin Members. Sauropod, theropod, pterosaur, and other vertebrate tracks occur throughout the Morrison Formation associated with alluvial, lacustrine, and transitional-marine shoreline deposits. Ichnofossils and co-occurring paleosols in the Morrison reflect the local and regional paleohydrologic settings, which record the annual soil moisture budget and were largely controlled by the climate in the basin. Contributions to near-surface biologic systems by groundwater from distant sources were minor, except where the water table perennially, seasonally, or ephemerally intersected the ground-surface. The Jurassic Morrison Formation in the southern portion of the basin experienced a mosaic of seasonal climates that varied from a drier (Tidwell/Windy Hill deposition) to a wetter (lower and middle Salt Wash deposition) and slightly drier (upper Salt Wash deposition) tropical wet-dry climate, returning to a wetter tropical wet-dry climate near the end of Morrison deposition (Brushy Basin deposition). The northern part of the basin experienced similar trends across a mosaic of Mediterranean climate types. The range and mosaic pattern of wet-dry Morrison climates is analogous to the range of climates (and their seasonal variability) that dominates the African savanna today.
- Publication:
-
Sedimentary Geology
- Pub Date:
- May 2004
- DOI:
- 10.1016/j.sedgeo.2004.01.006
- Bibcode:
- 2004SedG..167..177H