A two-dimensional semiconducting bolometer array for HAWC
Abstract
The Stratospheric Observatory For Infrared Astronomy's (SOFIA's) High resolution Airborne Wideband Camera (HAWC) will use an ion-implanted silicon bolometer array developed at NASA's Goddard Space Flight Center (GSFC). The GSFC Pop-Up Detectors (PUDs) use a unique "folding" technique to enable a 12 x 32 element close-packed array of bolometers with a filling factor greater than 95%. The HAWC detector uses a resistive metal film on silicon to provide frequency independent, ~50% absorption over the 40 - 300 micron band. The silicon bolometers are manufactured in 32-element rows within silicon frames using Micro Electro Mechanical Systems (MEMS) silicon etching techniques. The frames are then cut, "folded", and glued onto a metallized, ceramic, thermal bus "bar". Optical alignment using micrometer jigs ensures their uniformity and correct placement. The rows are then stacked side-by-side to create the final 12 x 32 element array. A kinematic Kevlar suspension system isolates the 200 mK bolometer cold stage from the rest of the 4K detector housing. GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The Junction Field Effect Transistor (JFET) preamplifiers for all the signal channels operate at 120 K, yet they are electrically connected and located in close proximity to the bolometers. The JFET module design provides sufficient thermal isolation and heat sinking for these, so that their heat is not detected by the bolometers. Preliminary engineering results from the flight detector dark test run are expected to be available in July 2004. This paper describes the array assembly and mechanical and thermal design of the HAWC detector and the JFET module.
- Publication:
-
Z-Spec: a broadband millimeter-wave grating spectrometer: design, construction, and first cryogenic measurements
- Pub Date:
- October 2004
- DOI:
- Bibcode:
- 2004SPIE.5498..428V