Computational Confirmation of the Carrier for the ``XCN'' Interstellar Ice Band: OCN- Charge Transfer Complexes
Abstract
Recent experimental studies provide evidence that the carrier for the so-called XCN feature at 2165 cm-1 (4.62 μm) in young stellar objects is an OCN-/NH+4 charge transfer (CT) complex that forms in energetically processed interstellar icy grain mantles. Although other RCN nitriles and RNC isonitriles have been considered, Greenberg's conjecture that OCN- is associated with the XCN feature has persisted for over 15 years. In this work, we report a computational investigation that thoroughly confirms the hypothesis that the XCN feature observed in laboratory studies can result from OCN-/NH+4 CT complexes arising from HNCO and NH3 in a water ice environment. Density functional theory calculations with HNCO, NH3, and up to 12 waters reproduce seven spectroscopic measurements associated with XCN: the band origin of the asymmetric stretching mode of OCN-, shifts due to isotopic substitutions of C, N, O, and H, and two weak features. However, very similar values are also found for the OCN-/NH+4 CT complex arising from HOCN and NH3. In both cases, the complex forms by barrierless proton transfer from HNCO or HOCN to NH3 during the optimization of the solvated system. Scaled B3LYP/6-31+G** harmonic frequencies for the HNCO and HOCN cases are 2181 and 2202 cm-1, respectively.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- January 2004
- DOI:
- Bibcode:
- 2004ApJ...601L..63P
- Keywords:
-
- Astrochemistry;
- Infrared: ISM;
- ISM: Lines and Bands