Mineral Sequestration of CO2 mixed with H2S and SO2 in Sandstone-Shale Formation
Abstract
Carbon dioxide (CO2) injection into deep geologic formations can potentially reduce atmospheric emissions of greenhouse gases. Sequestering less-pure CO2 waste streams (containing of H2S and/or SO2) is less expensive or requires less energy than separating CO2 from flue gas or a coal gasification process. The long-term interaction of these injected acid gases with shale-confining layers of sandstone formations has not been well investigated. We therefore have developed a conceptual model of injection of CO2 with H2S and/or SO2 into a sandstone-shale sequence, using hydrogeologic properties and mineral compositions commonly encountered in Gulf Coast sediments. We have performed numerical simulations using a 1-D radial well region considering sandstone alone and a 2-D model using a sandstone-shale sequence under acid-gas injection conditions. Results indicate that shale plays a limited role in mineral alteration and sequestration of gases within a sandstone horizon for a short time period (10,000 years in present simulations). Unlike H2S, the co-injection of SO2 results in different pH distribution, mineral alteration patterns, and CO2 mineral sequestration. Simulations generate a zonal distribution of mineral alteration and formation of CO2 and SO2 trapping minerals that depends the pH distribution. Co-injection of SO2 results in a larger and stronger acidic zone close to the well. Precipitation of CO2 trapping minerals occurs in the higher pH ranges beyond the acidic zones. In contrast, SO2 trapping minerals are stable at low pH ranges (below 5) in the front of the acidic zone. Corrosion and well abandonment caused by co-injection of SO2 is a very significant issue. Significant CO2 is sequestered in ankerite and dawsonite, and some in siderite. CO2 mineral-trapping capability can reach 76 kg per cubic meter of medium. Most of SO2 is trapped by alunite precipitation, while some of the SO2 is trapped by anhydrite and pyrite precipitation. Addition of the acid gases and induced mineral alteration result in changes in porosity. The limited information currently available on the mineralogy of natural high-pressure acid-gas reservoirs is generally consistent with our simulations.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2004
- Bibcode:
- 2004AGUFMGC51B1058X
- Keywords:
-
- 5114 Permeability and porosity;
- 3600 MINERALOGY AND PETROLOGY (replaces;
- 1719 Hydrology;
- 1010 Chemical evolution