Prediction of fault-related damage zones in porous granular rock using strain energy density criteria
Abstract
In granular geologic materials such as porous sandstone, fault-related damage zones are formed by deformation bands, which are tabular discontinuities characterized by pore space collapse and shear. We present results of a study in which separate strain energy density-based criteria are used to successfully predict the tendencies for the nucleation and for the propagation of deformation bands in a classic outcrop of fault-related damage zones within the brittlely-deformed Jurassic Wingate sandstone exposed in the Laramide-aged Uncompahgre Uplift, in western Colorado. The separate distributions of volumetric and distortional strain energy density are calculated for the geometry and stress state of the causative Laramide-aged thrust fault displacements from boundary element calculations of the attendant slip-induced local stresses. Volumetric strain energy density predicts the tendency for deformation band nucleation, the growth stage at which the deformation bands are defined by pore space collapse. Deformation band propagation, where shear occurs along the band, is predicted by distortional strain energy density. The relative magnitudes of elevated volumetric and distortional strain energy density are correlated with deformation band intensity (i.e. the mapped fracture intensity). Within a damage zone, enhanced deformation band nucleation tendencies are predicted and observed to occur within the upper hanging wall and ahead of the causative thrust fault, as well as along the frictionally-slipping base of the Wingate. Additionally, enhanced deformation band propagation tendencies are predicted ahead of and slightly within the footwall of the thrust. Here, propagation would occur along deformation bands that nucleated at an earlier stage of fault growth. The predicted tendencies for deformation band propagation are consistent with the observed distributions of compressive mode II deformation band stepover structures, which occur solely between propagating deformation bands. Further, deformation band intensity for both nucleation and propagation tendencies is predicted and observed to increase toward the fault. These model predictions are consistent with independent observations of fault-related deformation band damage zone architecture from other paradigmatic outcrops in southern Utah and Nevada. By implication, specific locations within a damage zone that have the greatest reductions in fluid conductivity due to deformation band growth can be identified. We show that the tendency for fault growth and interaction within porous granular rock can be systematically predicted based on an understanding of in-situ stress state, fault and/or fold geometry, and rock strength and deformability at the time of deformation. This method is not limited to the prediction of deformation bands, but can also be used to predict the distribution of other types of fractures in other rock types, given that the appropriate critical strain energy density values are determined through laboratory testing for each fracture and rock type.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2004
- Bibcode:
- 2004AGUFM.T41F1300O
- Keywords:
-
- 8010 Fractures and faults;
- 8110 Continental tectonics: general (0905);
- 5104 Fracture and flow;
- 1829 Groundwater hydrology;
- 0905 Continental structures (8109;
- 8110)